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The Determination of an Excess Capacitance
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Abstract—In the evaluation of “fringing capacitances” one is
required to map the specified geometry in the z plane onto the
upper half ¢ plane and then to determine the limiting value of the
capacitance between the two segments of the real axis—corre-
sponding to the two conductors in the z plane-~when one or both
of the gaps between them approaches zero. The usual procedure of
mapping the upper half ¢ plane onto an infinite parallel plate con-
figuration, which is often more involved than the first mapping,
can be eliminated if one recognizes that the capacitance obtained
by mapping the upper half ¢ plane onto a rectangle by means of a
well-known elliptic function exceeds, in the limit, the correct value
by (log 2) /=, for each gap involved.

Consider the problem of determining the geometrical capacitance!
between the two strips in the ¢ plane of Fig. 1, in the limit as 6 — 0,
subject, first, to the condition that the small semicircle is a magnetic
wall and then to the condition that the portion of the real axis be-
tween the strips is a magnetic wall. The difference between these
capacitances will be called the excess capacitance and denoted by
Cex. 1t is equal to (log 2)/x. It is independent of the widths of the
strips. The transformation
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maps the upper half of the ¢ plane into the infinite parallel plate
structure in the s plane so that the magnetic wall BC in the s plane
maps into a small semicircle centered at the origin in the ¢ plane, for

sufficiently distant BC. At the same time, the magnetic wall DA
in the s plane maps onto the real axis in the ¢ plane. Upon integration,
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For small 3, the capacitance of the strips in the £ plane is given by
the capacitance of the parallel plate configuration in the s plane,
namely, C = —s(8)/x or
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for sufficiently small 8.

If, on the other hand, the line segment between B and C in the
t plane is a magnetic wall, the transformation ¢ = sn?u maps the
interior of the rectangle in the u plane onto the upper half of the ¢
plane so that the line segments joining BC and DA are both magnetic
walls. Then it is well known [17 that the capacitance of the two
strips in the ¢ plane is given by K/K’ when k2 = (D — C)(B — A)/

(D — B)(C — A)21In thiscase, A = ¢, B = — §, C = §, and
D = b, so that
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Then, for sufficiently small &
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! Following the usual convention, Fig. 1 represents a cross section of
a geometry which extends infinitely perpendicular to the paper. Thus
capacitance means capacitance per unit depth.

2 It is at this point that the use of Cey simplifies the usual procedure
by replacing an integration which is special to the problem under con-
sideration by a single well-known integration.
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Fig. 1. Coordinate planes of the conformal transformations.
1 16 1 8ab
K'/K = -log — = =11 — log s 5
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and finally
log 2
Cox = K'/K — ¢ = 22 6)
m™

We see that the value of Cex is independent of @ and b no matter
how small. Thus capacitance between the line segments arising from
the lines of force falling inside of the magnetic wall BDC are com-
pletely shielded from the external geometry of the figure in the limit
as § — 0. The same value of excess capacitance will serve if one of
the gaps, which approaches zero, occurs at £ = o, a situation which
is found in Chen [2, fig. 13]. To show this one need only subject the
t plane to an inversion. This interchanges the role of zero and in-
finity without altering any of the corresponding values of capaci-
tance.

As an example, consider the odd-mode fringing capacitance as de-
termined by the Getsinger [3]. Referring to Bowman [1, p. 83,
fig. 47, we require the capacitance of AN with respect to BN. First
we determine K’/K having found k¥ = (D — C)(B — 4)/

(D—B){C —A)whereA = —» —§B = —»+35 C =1,and
D = 1/k2 Thus
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Then, for sufficiently small 5 )
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and the total odd-mode capacitance of the system C, is given by
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where v = en?(a,k’)/k?n?(a,k’). This is just the value one would
obtain from the more tedious alternate calculation.
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